Neural Network Exploration Using Optimal Experiment Design

نویسنده

  • David A. Cohn
چکیده

I consider the question "How should one act when the only goal is to learn as much as possible?". Building on the theoretical results of Fedorov (1972, Theory of Optimal Experiments, Academic Press) and MacKay (1992, Neural Computation, 4, 590-604), I apply techniques from optimal experiment design (OED) to guide the query/action selection of a neural network learner. I demonstrate that these techniques allow the learner to minimize its generalization error by exploring its domain efficiently and completely. I conclude that, while not a panacea, OED-based query/action selection has much to offer, especially in domains where its high computational costs can be tolerated. Copyright 1996 Elsevier Science Ltd

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Modelling of Optimal Robot Movement Using Branch and Bound Tree

In this paper a discrete competitive neural network is introduced to calculate the optimal robot arm movements for processing a considered commitment of tasks, using the branch and bound methodology. A special method based on the branch and bound methodology, modified with a travelling path for adapting in the neural network, is introduced. The main neural network of the system consists of diff...

متن کامل

Identifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm

The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description o...

متن کامل

Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design

The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...

متن کامل

Improve Estimation and Operation of Optimal Power Flow(OPF) Using Bayesian Neural Network

The future of development and design is impossible without study of Power Flow(PF), exigency the system outcomes load growth, necessity add generators, transformers and power lines in  power system. The urgency for Optimal Power Flow (OPF) studies, in addition to the items listed for the PF and in order to achieve the objective functions. In this paper has been used cost of generator fuel, acti...

متن کامل

Modeling and Optimization of Anethole Ultrasound-Assisted Extraction from Fennel Seeds using Artificial Neural Network

Extraction of essential oils from medicinal plants has received researcher’s attention as it has a wide variety of applications in different industries. In this study, ultrasonic method has been used to facilitate the extraction of active ingredient anethole from fennel seeds. Effect of different parameters like extraction time (20, 40, and 60 min), power (80, 240, and 400 Watts) and solid part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 9 6  شماره 

صفحات  -

تاریخ انتشار 1993